
J Mol Model (2003) 9:271–272
DOI 10.1007/s00894-003-0141-1

O R I G I N A L P A P E R

Fran�ois-Yves Dupradeau · Jacques Rochette

Bugs in computational chemistry software and their consequences:
the importance of the source code

Received: 25 February 2003 / Accepted: 16 May 2003 / Published online: 11 July 2003
� Springer-Verlag 2003

Abstract The increase in computer power and the
development of new mathematical concepts implemented
in software have allowed computational chemistry to
emerge as a new research field. Although programs were
freely distributed during the “golden age” of this disci-
pline, today they are usually copyrighted and have
become easier and easier to use through sophisticated
graphical interfaces. This “democratization” is a vector of
success for this discipline. Nowadays, non-theoreticians
can use such programs more easily and solve chemistry-
related problems with the computer. The number of
program offerings has rapidly grown and private compa-
nies specialized in molecular modeling have appeared and
compete to sell their products. Thus, numerous software
packages, often presenting similar capabilities, are now
available on the market. Within this context, the avail-
ability of the program source code remains, in our
opinion, an important criterion for program selection.

Keywords Academic, Free, Open source and proprietary
software · Open versus closed source code · Software bug

Bugs and software: general considerations

A bug is defined as an error or a defect that causes a
program to malfunction. All programs have bugs and they
represent a nightmare for programmers and users. This
was exemplified in the past by the bug of the millennium,
the Y2K bug. It was responsible for a global fear and was
even named TEOTWAWKI, i.e., the End of the World as

We Know It. [1] It is unrealistic to attempt to write bug-
free software and to find all the program errors. Indeed,
for big and multiplatform programs, so many combina-
tions of parameters can be found that it is impossible to
test all of them before the program is released. For this
reason, bugs have to be considered as a part of the
program. Users and developers have learned how to work
with programs and their potential errors, which can show
up at any time. Furthermore, a program is generally
protected by a disclaimer implying that the results
obtained with the program cannot be guaranteed.

Concerning computational chemistry and more gener-
ally scientific software, specific problems inherent in the
software type must be underlined. Computational chem-
istry programs are usually written by physicists, chemists
and programmers while some users might be non-
specialists running them as “black boxes”, meaning
without fully understanding the algorithms behind them.
Numerous bugs make a program crash and prevent the
user from realizing a task. Although this is a real
nuisance, bugs generating improper results are the worst
since they are difficult to detect. Therefore, the conse-
quences of bugs in scientific software are far more
damaging than those in word-processing type programs,
as erroneous results may be produced, trusted and even
published.

“Free”, “open source” and “academic” software

Although “free” and “open source” software belongs to
two different movements for semantic reasons, both
communities defend a similar philosophy. [2, 3] The basic
idea behind this is that each user has the freedom to read,
execute, modify and redistribute the source code. There-
fore, a prerequisite of “free” and “open source” software
is that the sources be available to everyone. “Academic”
computational chemistry software such as TINKER, [4]
AMBER, [5] CHARMM, [6] WHATIF [7] or GAMESS
[8] (among many others) do not follow exactly the same
rules. Indeed, such programs are usually copyrighted and

F.-Y. Dupradeau ())
GRBPD, UPRES EA 2629, Facult� de Pharmacie,
Universit� de Picardie Jules Verne,
1–3 rue des Louvels, 80037 Amiens, Cedex 1, France
e-mail: fyd@u-picardie.fr
Tel.: +33-(0)3-2282-7494

J. Rochette
GRBPD, UPRES EA 2629, Facult� de M�decine,
Universit� de Picardie Jules Verne,
1–3 rue des Louvels, 80037 Amiens, Cedex 1, France



their license contains restrictions intended to preserve
notices of authorship and development control. However,
“free”, “open source” and “academic” software share the
same crucial characteristic: the source code is provided.

The reliability of “free” and commercial UNIX
software has been studied and compared. Miller et al.
tested a large collection of UNIX programs. [9] They
showed that GNU programs are more reliable and
noticeably better than commercially produced software.
GNU developers explain that it is not an accident that
their programs are of such high quality. [10] An author
making the source code available for everyone had better
write a clear and clean source code, knowing his/her
reputation is at stake. Moreover, as the sources are
available, the whole community becomes involved in
correcting problems and sharing the improvements in
total transparency. It is clear that the work of testing and
debugging performed by a whole community from around
the world will be more efficient than that done by only a
few programmers, keeping the source code hidden. This
universal collaboration raises the quality level of the
program and should be the ultimate goal in scientific
software. Thus, the source code is a pledge of reliability
and development. Otherwise, the program could vegetate
and end up trapped as a fossil. This is well illustrated by
the logo of the AMBER software where two citations
have been successively used: “All the bugs are not out of
AMBER” and “Don’t stay trapped in fossil AMBER”.
[11, 12]

Commercial and proprietary software

Nowadays, a great number of private companies, which
do not share the same goals, sell commercial and
proprietary computational chemistry software. The source
code of their software is generally not provided and the
program is only distributed in the executable format, often
at a considerable cost. In most cases, this strategy is
applied in order to protect the program from unauthorized
use. It is well known that this type of software has one
advantage over “academic” software in that it is more
functional because of elaborate molecular graphics fea-
tures and because it is better documented and supported.
However, since the sources of such software are not
available, modelers have no other choice than to use them
as “black boxes”. This can be a significant limitation
especially in “academic” research where the necessity of
studying the implementation of algorithms and/or of
modifying the source code of the program might be
important. Moreover, bugs remain a mystery to the
community and consequently their corrections are fully
controlled by the provider. Once a bug is uncovered, the
users are then faced with having to wait for the company
to patch up the problem. In the end, the bug may be
corrected at a certain cost or worse, never be corrected at

all. This means that a new program has to be acquired or
developed which represents a considerable expense.

This viewpoint clearly reveals how important it is to
have access to the program source code in the compu-
tational chemistry field and more generally in scientific
software. This has been confirmed by Gaussian Inc., [13]
which not only sells the binary of their Gaussian 03
program, [14] but also gives their clients the opportunity
to buy the source code. Thus, in our opinion, the
availability of the source code, a guarantee of reliability
and evolution for a program, must be considered as a
significant criterion for selecting software. More partic-
ularly, modelers who begin in computational chemistry
are not always aware of this open–closed source duality
and should not consider only functionality when making
their choice. We hope this will encourage researchers
from private and “academic” circles not only to use
“open” source software but to distribute them as well.

References

1. Grossman WM (1998) Sci Am October:48
2. http://www.gnu.org/
3. http://www.opensource.org/
4. http://dasher.wustl.edu/tinker/
5. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham III

TE, DeBolt S, Ferguson D, Seibel G, Kollman PA (1995)
Comput Phys Commun 91:1–41

6. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swami-
nathan S, Karplus M (1983) J Comput Chem 4:187–217

7. Vriend G (1990) J Mol Graph 8:52–56
8. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS,

Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus
TL, Dupuis M, Montgomery J (1993) J Comput Chem
14:1347–1363

9. Miller BP, Koski D, Lee CP, Maganty V, Murthy R, Natarajan
A, Steidl J (1995) Fuzz revisited: a re-examination of the
reliability of UNIX utilities and services. In: Computer sciences
technical report #1268. University of Wisconsin-Madison,
April

10. http://www.gnu.org/software/reliability.html
11. http://amber.scripps.edu
12. http://amber.scripps.edu/bugfixes.html
13. Gaussian, Carnegie Office Park, Building 6, Suite 230,

Carnegie, Pa. 15106, USA, http://www.gaussian.com
14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,

Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN,
Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V,
Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA,
Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R,
Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai
H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C,
Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ,
Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K,
Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG,
Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK,
Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q,
Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G,
Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith
T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M,
Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople
JA (2003) Gaussian 03, Revision A.1. Gaussian, Pittsburgh, Pa.

272


